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• Set of facilities F, capacities ui ∀i∊F, 
• Metric d on F∪C,
• Integer k.

Output:    • Open facilities F’⊆F 
   • Connect σ: C→F’ 

Constraint:    • |F’| ≤ k     (cardinality cons.)
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Basic Linear Program

min  ∑i∊F, j∊C xi, j d(i, j)

(cardinality constraint)   ∑i∊F yi ≤ k,
∑i∊F xi, j = 1     ∀j∊C,

(capacity constraint) ∑j∊C xi, j ≤ uiyi  ∀i∊F,
       xi, j ≤ yi ∀j∊C, i∊F

0 ≤ xi, j , yi  ≤ 1 ∀j∊C, i∊F
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we allow capacity 
violation of 2:
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• Basic LP has unbounded integrality gap!  (unless a constraint is violated)

Solution:      Pseudo-Approximation  

For Basic LP,      must be ≥ 2

Violate cardinality 
constraint by a factor 
(open k facilities)

Violate capacity constraint 
by a factor 
(connect u clients)

Status of Capacitated k-Median
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Cardinality 
violation factor

Approx 
Factor

Technique

12+17/ 1+ [KPR’98] Local Search

5+ O(1/ 3) [KPR’98] Local Search

2 7+ [GL’13] Basic LP 

1+ O(1/ 2log1/ ) [Li’15] Configuration LP

Pseudo approximations with cardinality (k) violation:
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Capacity 
violation factor

Approx 
Factor

Technique

40 50 [CR’05] +Dual fitting

3+ O(1/ 2) [BFRS’15] Basic LP

2+ O(1/ ) [L’15] Basic LP

1+ O(1/ 5) Configuration LP

Pseudo approximations with capacity (u) violation:  (Harder! : satisfying 
       global cardinality -k- constraint)

Status of Capacitated k-Median
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Idea: Isolated group B⊆F

Basic LP opens  yB = ∑i∊B yi  fractional facilities 

We can open ⌈yB⌉ integral facilities?

Violation factor ⌈yB⌉/yB  may be large when yB is 
small

Goal:    get “integral” solutions for B if yB  small

Configuration LP - intuition

B
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B} 

LP is large. We don’t know how to solve directly

Our algorithm either rounds or finds a violated constraint for ellipsoid alg.!
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• A black component has 
small total fractional 
opening ∑yi ≤ 1/(2 )
• Distances within and 
between black components 
are “small”

• Bundle closeby facilities 
around chosen 
representative clients
• Total fractional opening 
in a bundle is not too 
small ∑ yi ≥ ½   

• A group has large total 
opening  ∑ yi ≥ 1/
• Number of children groups of 
a group is small  ≤ 1/
• Distance from a group is to its 
parent is “small”  



• Configuration LP

• Rounding algorithm for (1+ ) capacity violation

• 3-phase Clustering

• Obtaining Local Solutions
• Defining Concentrated (isolated) Components
• Distributions over Local Solutions for Concentrated Components

• Putting it all together

Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation What’s next?



• Configuration LP

• Rounding algorithm for (1+ ) capacity violation

• 3-phase Clustering

• Obtaining Local Solutions
• Defining Concentrated (isolated) Components
• Distributions over Local Solutions for Concentrated Components

• Putting it all together

Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation What’s next?



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation Obtaining Local Solutions

. . . 

. . . 

. . . 

.

.

.

Black component

Concentrated

Non-Concentrated

Defining Concentrated Components



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

. . . 

. . . 

. . . 

.

.

.

Extreme case:
• A client is either fully connected to a black comp. J

e.g. xJ,j = 1

 or fully connected to components other than J
e.g. xJ,j = 0

Defining Concentrated Components

Obtaining Local Solutions

. . . 

. . . 

. . . 

.

.

.



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

. . . 

. . . 

. . . 

.

.

.

Extreme case:
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• Define  J := ∑j∊C (1-xJ,j)xJ,j   for a black comp. J
 
• We can easily carry J amount of demand out of J

• If J small ≤  3 xJ,C                      Concentrated

• If J big     >  3 xJ,C                Non-Concentrated

• Life is easy with Non-Concentrated Components:
      • We can carry all demand out with 1/ 3 CostLP  
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• Basic LP solution is NOT sufficient (gap example)

• For each concentrated component J,

• If Configuration LP constraints are NOT satisfied for J, return a
 constraint not satisfied to ellipsoid algorithm

 • o/w  use zS’s for each small S⊆J get a “raw” distribution over solutions                      

z  + ∑S zS = 1  
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Markov ineq. / Expectation 
is yB                     ∑zS,i = yB 

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

• We’ll extract a distribution over “nice” integral solutions from {zS}, {zS,i}, {zS,i,j}
(raw distribution: expected number of open facilities  yB, expected amount of demand served  xB,C)
• “nice” will initially mean:

• open facilities   ≤ yB /(1- )   and

• total demand served   ≥ xB,C (1- ) 

• Show: Total mass of “nice” solutions in the initial distribution is not too small!

Markov ineq. / Expectation 
is yB                     ∑zS,i = yB 

Idea: Use that this is a concentrated component! 

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

• We’ll extract a distribution over “nice” integral solutions from {zS}, {zS,i}, {zS,i,j}
(raw distribution: expected number of open facilities  yB, expected amount of demand served  xB,C)
• “nice” will initially mean:

• open facilities   ≤ yB /(1- )   and

• total demand served   ≥ xB,C (1- )    

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions

first O( ) capacity blow up



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

• “nice” will finally mean:

• A distribution over integral sets S, s.t. |S| ∈ { ⌊yB ⌋, ⌈ yB ⌉, ⌈ yB ⌉+1 }
   

• Capacity blow up O( )

• each solution serves all the demand locally

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

How to round (sample from) these nice 
distributions?:

concentrated components to round 
together (V)

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions

concentrated components

non-concentrated components



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

How to round (sample from) these nice 
distributions?:

Independently for each component?
• Too many open facilities

concentrated components to round 
together (V)

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions

concentrated components

non-concentrated components



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

How to round (sample from) these nice 
distributions?:

Independently for each component?
• Too many open facilities

concentrated components to round 
together (V)

Dependently for all concentrated 
components in sibling groups together!

• O(1) total extra open facilities

Distributions Over Local Solutions for Concentrated 
Components

Obtaining Local Solutions

concentrated components

non-concentrated components



• Configuration LP

• Rounding algorithm for (1+ ) capacity violation

• 3-phase Clustering

• Obtaining Local Solutions
• Defining Concentrated (isolated) Components
• Distributions over Local Solutions for Concentrated Components

• Putting it all together

Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation What’s next?



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

For each group G,

• We may be opening O(1) extra 
facilities in all the children of a group

                

concentrated components to round 
together (V)

Putting it all together

Putting it all together

concentrated components

non-concentrated components



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

For each group G,

• We may be opening O(1) extra 
facilities in all the children of a group

• Shut down O(1) facilities in G or in 
children.

                

concentrated components to round 
together (V)

Putting it all together

Putting it all together
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non-concentrated components



Constant Approximation for Capacitated k-Median with (1+ )-capacity Violation 

For each group G,

• We may be opening O(1) extra 
facilities in all the children of a group

• Shut down O(1) facilities in G or in 
children.

• Serve their demand with capacity 
blow-up                 

concentrated components to round 
together (V)

A group has Ω(1/ ) open facilities 

Putting it all together

Putting it all together

concentrated components

non-concentrated components



Further research

• This finishes pseudo approximations for capacitated k-median.

• A true constant-factor approximation for capacitated k-median? (no violation)

• Configuration LP has big integrality gap!


