Incremental 2-Edge-Connectivity In Directed Graphs

Loukas Georgiadis
University of Ioannina
Greece

Giuseppe F. Italiano
University of Rome
Tor Vergata
Italy

Nikos Parotsidis
University of Rome
Tor Vergata
Italy
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Outline

 Definitions
 • 2-edge-connectivity in undirected graphs
 • 2-edge-connectivity in directed graphs
 • Problem definition
 • Known algorithm and our result

 High-level idea

 Basic ingredients
 • Dominators
 • Auxiliary components

 Tools

 Conclusion
Let $G = (V, E)$ be a undirected graph.

- G is connected if there is a path between any two vertices.
- The connected components of G are its maximal connected subgraphs.
Let $G = (V, E)$ be a connected undirected graph.

- An edge is a **bridge**, if its removal increases the number of connected components.
Let $G = (V, E)$ be a connected undirected graph.
- An edge is a bridge, if its removal increases the number of connected components.
Undirected: Connected components

By Menger’s theorem, two vertices are 2-edge-connected iff the removal of any bridge leaves them in the same connected component.
By Menger’s theorem, two vertices are **2-edge-connected** iff the removal of any **bridge** leaves them in the same **connected component**.
By Menger’s theorem, two vertices are 2-edge-connected iff the removal of any bridge leaves them in the same connected component.

Two vertices are 2-edge-connected if there are two edge-disjoint paths between them.
By Menger’s theorem, two vertices are 2-edge-connected iff the removal of any bridge leaves them in the same connected component.

Two vertices are 2-edge-connected if there are two edge-disjoint paths between them.
By Menger’s theorem, two vertices are 2-edge-connected iff the removal of any bridge leaves them in the same connected component.

Two vertices are 2-edge-connected if there are two edge-disjoint paths between them.

The 2-edge-connected blocks of G are its maximal subsets $B \subseteq V$ s.t. u and v are 2-edge-connected $\forall u, v \in B$
By Menger’s theorem, two vertices are 2-edge-connected iff the removal of any bridge leaves them in the same connected component.

Two vertices are 2-edge-connected if there are two edge-disjoint paths between them.

The 2-edge-connected blocks of G are its maximal subsets $B \subseteq V$ s.t. u and v are 2-edge-connected $\forall u, v \in B$

$O(m + n)$ time algorithm [Tarjan 1972]
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Let $G = (V, E)$ be a directed graph.

- G is strongly connected if there is a directed path from each vertex to every other vertex.
- The strongly connected components of G are its maximal strongly connected subgraphs.
Let $G = (V, E)$ be a directed graph.

- G is strongly connected if there is a directed path from each vertex to every other vertex.
- The strongly connected components of G are its maximal strongly connected subgraphs.
Let $G = (V, E)$ be a strongly connected directed graph.

- An edge $e \in E$ is a strong bridge if its removal increases the strongly connected components of G.
Directed: 2-edge-connectivity

Let $G = (V, E)$ be a strongly connected directed graph.

- An edge $e \in E$ is a strong bridge if its removal increases the strongly connected components of G.
Let $G = (V, E)$ be a strongly connected directed graph.

- An edge $e \in E$ is a **strong bridge** if its removal increases the strongly connected components of G.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are 2-edge connected if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.
Directed: 2-edge-connectivity

By Menger's Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are 2-edge connected if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices u and v are **2-edge connected** if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are **2-edge connected** if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are 2-edge connected if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are 2-edge connected if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices u and v are 2-edge connected if and only if the removal of any strong bridge leaves them in same strongly connected component.

Vertices u and v are 2-edge connected if there are two edge-disjoint paths from u to v and two edge-disjoint paths from v to u.

A 2-edge-connected block of G is a maximal subset $B \subseteq V$ s.t. u and v are 2-edge connected for all $u, v \in B$.
Directed: 2-edge-connectivity

By Menger’s Theorem, vertices \(u \) and \(v \) are 2-edge connected if and only if the removal of any strong bridge leaves them in the same strongly connected component.

Vertices \(u \) and \(v \) are 2-edge connected if there are two edge-disjoint paths from \(u \) to \(v \) and two edge-disjoint paths from \(v \) to \(u \).

A 2-edge-connected block of \(G \) is a maximal subset \(B \subseteq V \) s. t. \(u \) and \(v \) are 2-edge connected for all \(u, v \in B \).

- \(O(m + n) \) time algorithm
 [Georgiadis, Italiano, Laura, P. 2015]
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problem definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Problem definition

Graph + data structure
Problem definition

Graph + data structure

Are u and v 2-edge-connected
Problem definition

Are u and v 2-edge-connected

Yes/No

Graph + data structure

ICALP 2016, Rome
Problem definition

Graph + data structure

What are the 2-edge-connected blocks in G
Problem definition

Graph + data structure

What are the 2-edge-connected blocks in G

$\{a, b, d\}, \{c, e\}, \{f\}$
Problem definition

Graph + data structure
Problem definition

Graph + data structure

Insert \((x, y)\)
Problem definition

Graph + data structure

Insert (x,y)
Problem definition

Graph + data structure

Are u and v 2-edge-connected
Problem definition

Graph + data structure

Are u and v 2-edge-connected

Yes/No
Problem definition

Graph + data structure

Goal:
Update time faster than recomputing
Fast query time
Dynamic graph algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>Undirected graphs</th>
<th>Directed graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity/Transitive closure</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Connected components/Strongly connected components</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>APSP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DFS tree</td>
<td>Yes</td>
<td>(only on DAGs)</td>
</tr>
<tr>
<td>MST</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>2-edge-connectivity</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>2-vertex-connectivity</td>
<td>Yes</td>
<td>?</td>
</tr>
</tbody>
</table>
Incremental 2-edge-connectivity
Undirected VS Directed

Block tree structure

No tree structure is possible
Incremental 2-edge-connectivity
Undirected VS Directed

Block tree structure

No tree structure is possible
Incremental 2-edge-connectivity
Undirected VS Directed

- Block tree structure
- No tree structure is possible
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Simple-minded solutions

<table>
<thead>
<tr>
<th></th>
<th>Update time</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never update</td>
<td>$O(1)$ per insertion</td>
<td>$O(m + n)$</td>
</tr>
<tr>
<td>Always update</td>
<td>$O(m + n)$ per insertion</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Our algorithm

<table>
<thead>
<tr>
<th></th>
<th>Update time</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never update</td>
<td>$O(1)$ per insertion</td>
<td>$O(m + n)$</td>
</tr>
<tr>
<td>Always update</td>
<td>$O(m + n)$ per insertion</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Our algorithm</td>
<td>$O(mn)$ total time</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result

- High-level idea

- Basic ingredients
 - Dominators
 - Auxiliary components

- Tools

- Conclusion
High-level idea

Dominator tree

$O(n)$ time
Labeling algorithm

2-edge-connected blocks

Auxiliary components
Dominators

Flow graph $G(s) = (V, A, s)$: all vertices are reachable from start vertex s

v dominates w if all paths from s to w contain v

$dom(w) =$ set of vertices that dominate w
\(\nu \) dominates \(\omega \) if all paths from \(s \) to \(\omega \) contain \(\nu \)

\[D(s) = \text{dominator tree of } G(s) \]

\(G(s) \)

\(D(s) \)
Dominators

\(v \) dominates \(w \) if all paths from \(s \) to \(w \) contain \(v \)

\[G(s) \]

\[D(s) = \text{dominator tree of } G(s) \]
Dominators

\(\nu \) dominates \(\omega \) if all paths from \(s \) to \(\omega \) contain \(\nu \)

\[G(s) \]

\[D(s) = \text{dominator tree of } G(s) \]

ICALP 2016, Rome
Dominators

\[\nu \text{ dominates } \omega \text{ if all paths from } s \text{ to } \omega \text{ contain } \nu \]

\[D(s) = \text{dominator tree of } G(s) \]

\[G(s) \]

\[D(s) \]

ICALP 2016, Rome
𝑣 dominates 𝑤 if all paths from 𝑠 to 𝑤 contain 𝑣

\[G(s) \]

\[D(s) = \text{dominator tree of } G(s) \]

ICALP 2016, Rome
Dominators

v dominates w if all paths from s to w contain v

$G(s)$

$D(s) = \text{dominator tree of } G(s)$

v dominates w if all paths from s to w contain v

$G(s)$

$D(s) = \text{dominator tree of } G(s)$

$\mathcal{O}(ma(m, n))$-time algorithm: [Lengauer and Tarjan ’79]

$\mathcal{O}(m + n)$-time algorithms:

[Alstrup, Harel, Lauridsen, and Thorup ‘97]
Exploiting dominator tree
Exploiting dominator tree

• All paths from s to c contain l, f, d
Exploiting dominator tree

- All paths from s to c contain l, f, d
- All paths from s to c contain the strong bridges $(s, l), (f, d)$
Exploiting dominator tree

- All paths from s to c contain l, f, d
- All paths from s to c contain the strong bridges $(s, l), (f, d)$
- A strong bridge is the only incoming edge to the vertices of its subtree
The **dominator tree** of the graph provides only **partial information**.
Exploiting dominator tree

The **dominator tree** of the graph provides only **partial information**. The **dominator tree of the reverse graph** provides **other** partial information.
Lemma [Georgiadis, Italiano, P.]: Two vertices u and v are 2-edge-connected iff

- Their nearest bridge e in D is common and they are not separated in $G \setminus e$
- Their nearest bridge e in D^R is common and they are not separated in $G \setminus e$
Lemma [Georgiadis, Italiano, P.]: Two vertices u and v are 2-edge-connected iff
- Their nearest bridge e in D is common and they are not separated in $G \setminus e$
- Their nearest bridge e in D^R is common and they are not separated in $G \setminus e$

c and g are not 2-edge-connected since they have distinct nearest bridges.
Exploiting dominator tree

\[c \text{ and } e \text{ are 2-edge-connected iff they are strongly connected in } G \setminus (f, d) \]

Lemma [Georgiadis, Italiano, P.]: Two vertices \(u \) and \(v \) are 2-edge-connected iff
- Their nearest bridge \(e \) in \(D \) is common and they are not separated in \(G \setminus e \)
- Their nearest bridge \(e \) in \(D^R \) is common and they are not separated in \(G \setminus e \)
Exploiting dominator tree

Lemma [Georgiadis, Italiano, P.]: Two vertices u and v are 2-edge-connected iff

- Their nearest bridge e in D is common and they are not separated in $G \setminus e$
- Their nearest bridge e in D^R is common and they are not separated in $G \setminus e$
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Auxiliary components

Bridge decomposition: The forest obtained by removing the strong bridges from the dominator tree.

Lemma: two vertices are 2-edge-connected **only if** they are in the same tree of the bridge decomposition.
Bridge decomposition: The forest obtained by removing the strong bridges from the dominator tree.

Lemma: two vertices are 2-edge-connected **only if** they are in the same tree of the bridge decomposition.
Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
• Keep the paths using only vertices of the tree
• For every path using vertices outside the tree, replace the subpath outside with a shortcut edge
Auxiliary components

Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge
Auxiliary components

Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge
Auxiliary components

Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at r) are disconnected by $(d(r), r)$ iff they are not strongly connected in the auxiliary graph of their tree (in the same auxiliary component).
Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at r) are disconnected by $(d(r), r)$ iff they are not strongly connected in the auxiliary graph of their tree (in the same auxiliary component).

Algorithm: Two vertices u and v are 2-edge-connected iff they are in the same auxiliary component in G and G^R.
Auxiliary components

Idea: Encode all the paths that do not use the incoming strong bridge between vertices in the same tree of the bridge decomposition with an auxiliary graph.

Construction:
- Keep the paths using only vertices of the tree
- For every path using vertices outside the tree, replace the subpath outside with a shortcut edge

Lemma: Two vertices in the same tree (rooted at \(r \)) are disconnected by \((d(r), r)\) iff they are not strongly connected in the auxiliary graph of their tree (in the same auxiliary component).

GOAL: Incrementally maintain the bridge decomposition and the auxiliary components.
Outline

- Definitions
 - 2-edge-connectivity in undirected graphs
 - 2-edge-connectivity in directed graphs
 - Problems definition
 - Known algorithm and our result
- High-level idea
- Basic ingredients
 - Dominators
 - Auxiliary components
- Tools
- Conclusion
Tools

- Incremental dominator tree
 - 2012 – Georgiadis, Italiano, Laura, Santaroni
 - $O(m \min\{n, k\} + kn)$

- Incremental SCCs in each auxiliary graph
 - 2009 & 2016 – Bender, Fineman, Gilbert, Tarjan:
 - $O\left(m \min\{\sqrt{m}, n^{2/3}\}\right)$
Combining things...

- Many instances of the Incremental SCCs algorithm
- Vertices can move across auxiliary graphs
- Auxiliary graphs can merge
- ...

ICALP 2016, Rome
Concluding remarks

Results:

• **Incremental** $O(mn)$ **algorithm** for maintaining the pairwise **2-edge-connectivity** in directed graphs.

• **Answer queries in** $O(1)$ **time**, whether two vertices are 2-edge-connected. If the two vertices are not 2-edge-connected, we return an edge that separates them.

Open problems:

• Can we maintain incrementally the 2-vertex-connected blocks?

• **Decremental? Fully dynamic?**
Concluding remarks

Results:

• Incremental $O(mn)$ algorithm for maintaining the pairwise 2-edge-connectivity in directed graphs.

• Answer queries in $O(1)$ time, whether two vertices are 2-edge-connected. If the two vertices are not 2-edge-connected, we return an edge that separates them.

Open problems:

• Can we maintain incrementally the 2-vertex-connected blocks?

• Decremental? Fully dynamic?

Thank you!