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Introduction to WordEquations

abX = Xba ⇐⇒ X ∈ (ab)∗a.

WordEquations over a monoid M : Given a pair (U, V ) of
strings over elements of M and variables. Is there a substitution of
variables by elements in M such that U = V in M?

M = Σ∗ free monoid: aX = bY no solution.

M = F (Σ) free group: aX = bY infinitely many solutions.

M = M(Σ, I) free partially commutative monoid.
baXbY = aY X no solution due to length constraints.

M = G(Σ, I) free partially commutative group, b = b−1.
baXbY = aY X infinitely many solutions if ab = ba.
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From Hilbert’s Tenth Problem to Tarski

1900 Hilbert10. Given a polynomial p(X1, . . . , Xk) with
coefficients in Z, is there an interger solution?

1960’s WordEquations special instance of Hilbert10

1970 Matiyasevich: Hilbert10 is undecidable based on
previous work by Davis, Putnam, and Robinso

1977 Makanin: WordEquations is decidable for Σ∗

1982/84 Makanin/Razborov: Existential and positive theories
of free groups are decidable

1998–2006 Tarski’s conjectures:
Kharlampovich and Myasnikov: The theory of free groups is
decidable.
Kharlampovich/Myasnikov and Sela: The theories for free
nonabelian groups are equivalent.
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Complexity of Makanin’s algorithms

WordEquations. Complexity (first published estimation):

DTIME
(
22

22
2poly(n) )

Makanin’s algorithm for solving equations in free groups is not
primitive recursive. (Kościelski/Pacholski 1990)

1999 Plandowski: WordEquations is in PSPACE.

2000 Gutiérrez: WordEquations for free groups is in
PSPACE.

2001 D., Gutiérrez, Hagenah: WordEquations for free
groups with rational constraints is PSPACE-complete.
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From Lempel-Ziv Compression to recompression

ICALP 1998. Plandowski and Rytter: Application of Lempel-Ziv
Encodings to the Solution of Word Equations.

New conjecture: WordEquations is NP-complete.

Compression became a main tool in solving equations.

STACS 2013 and J. ACM 2016. Artur Jeż applied
recompression to WordEquations and simplified all known
proofs for decidability.
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Free partially commutative monoids and groups

Σ denotes a finite alphabet with involution a 7→ a with a = a.

ρ : Σ→ 2R where R is a set of resources, ρ(a) = ρ(a).

M(Σ, ρ) = Σ∗/ { ab = ba | ρ(a) ∩ ρ(b) = ∅ }
is a trace monoid with involution a1 · · · a` = a` · · · a1.

Σ∗/ { ab = ba | ρ(a) ∩ ρ(b) = ∅ } ∪ { aa = 1 | a ∈ Σ } is a
RAAG G(Σ, ρ) where g = g−1.

RAAG = right angled Artin group = free partially
commutative group = graph group.

Our results hold more generally for graph products.

Task

Solve equations over these partially commutative structures.
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Traces are directed acyclic node labeled graphs

Example: A =
{
a, a, b, b, c, c

}
with

ρ(a) = ρ(a) = {r}, ρ(b) = ρ(b) = {s}, and

ρ(c) = ρ(c) = {r, s}

c

a

b

a

b

a a

b

c

a

b

Dependence graph (Hasse diagram in red) of abacababcab
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Overview

free monoids free groups
∃-theory Makanin ’77 Makanin ’82

Pos. theory undecidable Makanin & Razborov ’84

Theory undecidable Kharlampovich & Myasnikov 2004

trace monoids RAAGs graph products
∃-theory Matiyasevich ’97 D. & Muscholl ’02 D. & Lohrey ’03

Pos. theory undecidable D. & Lohrey ’03 D. & Lohrey ’032

Theory undecidable open undec./open

Casals-Ruiz & Kazachkov 2011 define an analogue of
Makanin-Razborov diagrams for RAAGS.

2There is a reduction from the graph product to the factors.
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All Solutions
Main contribution: high level version

We describe the set of all solution by an EDT0L language:
This is, we construct an NFA where the labels are
endomorphisms, the accepted language is a rational set R of
endomorphisms over a free monoid C∗. If X1, . . . , Xk denote
the variables, then we obtain all solutions by:

{ (h(c1), . . . , h(ck)) | h ∈ R } .

New decidability results: Finiteness of solution sets for
equations over trace monoids.

Improved complexity: NSPACE(n log n).

Simplified proofs.

8 / 15



Our theorem for trace monoids with involution

Input. A resource alphabet (A ∪ X , ρ) with involution, a trace
equation (U, V ) in constants A and variables X = {X1, . . . , Xk}.
Output. An “extended” alphabet C with involution. An NFA A of
singly exponential size accepting a rational set R of
A-endomorphisms on C∗ such that under the canonical projection
π : A∗ →M(A, ρ) we obtain:

{(πh(c1), . . . , πh(ck)) | h ∈ R}
= {(σ(X1), . . . , σ(Xk)) | σ solves U = V in M(A, ρ)}.

Furthermore, (U, V ) has a solution if and only if A accepts a
nonempty set; (U, V ) has infinitely many solutions if and only if A
has a directed cycle. These conditions can be tested in
NSPACE(n log n) where n = |UV |.

[Group version] The same, but solutions σ satisfy σ(U) = σ(V )
in the RAAG G(A, ρ) and for a variable X the solution σ(X) is
restricted to be a reduced trace (= no factors aa−1).
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All solutions of a trace equation as an EDT0L language

1 Construct the NFA A using simple rules.

2 The overall strategy is an induction: remove first letters that
use the least set of resources. Repeat.

3 States are equations over certain quotients of resource
monoids: these intermediate structures use partial
commutation beyond trace monoids.

4 Transitions are labeled by endomorphisms.

5 Prove soundness.

6 Prove completeness using (a modified) Jeż compression.
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The NFA

States (for equations without constraints) are tuples (W,B,X , ρ, θ)

W = (U, V ) equation

B constants with A ⊆ B ⊆ C
X variables in W

ρ : B ∪ X → 2R resources

θ additional commutation rules

Transitions change these parameters.

A B-solution is given by σ : X →M(B, ρ, θ) such that
σ(U) = σ(V ). A solution is given by a pair (σ, α) where
α : M(B, ρ, θ)→M(A, ρA, ∅) transforms the B-solution to a
solution over the original trace monoid.
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ε-transitions: substitutions of variables

There is no change in constants: the label is the identity idC∗ .

1 τ(X) = 1, remove X from the equation. Potentially removes
partial commutation.

2 τ(X) = aX, where a is a constant.

3 τ(X) = Y aX where Y is a fresh variable such that
ρ(Y )  ρ(X). Prevent that such a splitting occurs for X
more than a constant number of times. (This is crucial.)

4 Define types θ(x) = u to express that xu = ux. Here, x is a
variable or a word of length at most 2 and u is a word of
length at most 2.

5 There are symmetric rules for the right side.
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Compression: transitions that modify constants

Choose fresh letters c and c.

1 Rename a as c. The label is the morphism defined by

h(c) = a and h(c) = a.

2 Compress some word u into a single letter c. This includes
compressions ab→ a, ab→ b, aa→ a. The label is the
morphism defined by

h(c) = u and h(c) = u.
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Uncrossing

If we wish to compress a factor ab into a fresh letter c, then we
must uncross the factor first. Consider

· · · bXaXuXa · · ·

with σ(X) = vbw where ρ(a) ∩ ρ(v) = ∅ and ρ(b) = ρ(a) ∪ ρ(v).

Then we split X by τ(X) = Y bX where Y is a new variable with
ρ(Y ) = S. The new solution is σ(Y ) = v and σ(X) = w.

We obtain

· · · bY bXaY bXuX bY a · · · = · · · bY bXY abXuX baY · · ·

and compression yields

· · · bY bXY cXuX cY · · ·
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Conclusion

The algorithm is greedy: it tries nondeterministically
everything within a given space bound.

The “tricky part” is to prove completeness: every solution can
be recovered by some path in the NFA A if “the extended
alphabet C is large enough.”

Open problem. Can we construct an NFA for
endomorphisms over some free group F (C) if there are
elements of order 2? The answer is “yes” for free products.

Challenge. Prove NP-completeness for WordEquations.

Thank you
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