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Introduction to WORDEQUATIONS

abX = Xba <= X € (ab)*a.

WORDEQUATIONS over a monoid M: Given a pair (U, V) of
strings over elements of M and variables. Is there a substitution of
variables by elements in M such that U =V in M?

e M = X* free monoid: aX = bY no solution.
o M = F(X) free group: aX = bY infinitely many solutions.
o M = M(X,I) free partially commutative monoid.

baXbY = aY X no solution due to length constraints.

o M = G(%,1) free partially commutative group, b=b""1.
baXbY = aY X infinitely many solutions if ab = ba.
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From

Hilbert's Tenth Problem to Tarski

1900 HILBERT10. Given a polynomial p(Xy,..., X;) with
coefficients in Z, is there an interger solution?

1960's WORDEQUATIONS special instance of HILBERT10

1970 Matiyasevich: HILBERT10 is undecidable based on
previous work by Davis, Putnam, and Robinso

1977 Makanin: WORDEQUATIONS is decidable for >*

1982/84 Makanin/Razborov: Existential and positive theories
of free groups are decidable

1998-2006 Tarski's conjectures:

Kharlampovich and Myasnikov: The theory of free groups is
decidable.

Kharlampovich/Myasnikov and Sela: The theories for free
nonabelian groups are equivalent.

)
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Complexity of Makanin's algorithms

WORDEQUATIONS. Complexity (first published estimation):

spoly(n
52! y(n)

DTIME (2% )

@ Makanin's algorithm for solving equations in free groups is not
primitive recursive. (Koscielski/Pacholski 1990)

1999 Plandowski: WORDEQUATIONS is in PSPACE.

2000 Gutiérrezz WORDEQUATIONS for free groups is in
PSPACE.

2001 D., Gutiérrez, Hagenah: WORDEQUATIONS for free
groups with rational constraints is PSPACE-complete.
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From Lempel-Ziv Compression to recompression

ICALP 1998. Plandowski and Rytter: Application of Lempel-Ziv
Encodings to the Solution of Word Equations.

@ New conjecture: WORDEQUATIONS is NP-complete.

@ Compression became a main tool in solving equations.

STACS 2013 and J. ACM 2016. Artur Jez applied
recompression to WORDEQUATIONS and simplified all known
proofs for decidability.
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Free partially commutative monoids and groups

Y denotes a finite alphabet with involution a — @ with @ = a.
p: X — 2% where R is a set of resources, p(a) = p(a).
o M(%,p) =%"/{ab=ba | p(a)Np(b) =0}
is a trace monoid with involution a7 ---a; = ay---ay.
o X*/{ab=ba | pla)Npl)=0}U{aa=1 |acX}isa
RAAG G(X, p) where g = g~ L.
@ RAAG = right angled Artin group = free partially
commutative group = graph group.

@ Our results hold more generally for graph products.

Solve equations over these partially commutative structures. \




Traces are directed acyclic node labeled graphs

Example: A = {a,a, b,b, C,E} with
pla) = p(@) = {r}, p(b) = p(b) = {s}, and
p(c) = p(€) = {r,s}

Dependence graph (Hasse diagram in red) of abacababcab



Overview

free monoids | free groups

J-theory Makanin '77 Makanin '82
Pos. theory | undecidable Makanin & Razborov '84
Theory undecidable Kharlampovich & Myasnikov 2004

trace monoids | RAAGs graph products
I-theory Matiyasevich '97 | D. & Muscholl '02 | D. & Lohrey '03
Pos. theory | undecidable D. & Lohrey '03 D. & Lohrey '03?
Theory undecidable open undec./open

Casals-Ruiz & Kazachkov 2011 define an analogue of
Makanin-Razborov diagrams for RAAGS.

2There is a reduction from the graph product to the factors.
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ALL SOLUTIONS

Main contribution: high level version

@ We describe the set of all solution by an EDTOL language:
This is, we construct an NFA where the labels are
endomorphisms, the accepted language is a rational set R of
endomorphisms over a free monoid C*. If X1,..., X denote
the variables, then we obtain all solutions by:

{(h(c1),...,h(ck)) | hER}.

@ New decidability results: Finiteness of solution sets for
equations over trace monoids.

@ Improved complexity: NSPACE(nlogn).
@ Simplified proofs.




Our theorem for trace monoids with involution

Input. A resource alphabet (AU X, p) with involution, a trace
equation (U, V) in constants A and variables X = {X7,..., X}

Output. An “extended” alphabet C' with involution. An NFA A of
singly exponential size accepting a rational set R of

A-endomorphisms on C* such that under the canonical projection
7w A* — M(A, p) we obtain:

{(mh(c1),...,mh(ck)) | h € R}
={(c(X1),...,0(Xg)) | o solves U =V in M(A,p)}.

Furthermore, (U, V') has a solution if and only if A accepts a
nonempty set; (U, V') has infinitely many solutions if and only if A
has a directed cycle. These conditions can be tested in
NSPACE(n logn) where n = |UV].

[Group version] The same, but solutions ¢ satisfy o(U) = (V)
in the RAAG G(A, p) and for a variable X the solution o(X) is
restricted to be a reduced trace (= no factors aa™!).
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All solutions of a trace equation as an EDTOL language

@ Construct the NFA A using simple rules.

@ The overall strategy is an induction: remove first letters that
use the least set of resources. Repeat.

© States are equations over certain quotients of resource
monoids: these intermediate structures use partial
commutation beyond trace monoids.

Transitions are labeled by endomorphisms.

Prove soundness.

© 00

Prove completeness using (a modified) Jez compression.

10/15



The NFA

States (for equations without constraints) are tuples (W, B, X, p,0)

W= (U,V) equation
B constants with AC BC C
X variables in W
p:BUX — 2™ | resources
0 additional commutation rules

Transitions change these parameters.

A B-solution is given by o : X — M (B, p, ) such that
o(U) = o(V). A solution is given by a pair (o, ) where

a: M(B,p,0) — M(A, pa, D) transforms the B-solution to a

solution over the original trace monoid.
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e-transitions: substitutions of variables

There is no change in constants: the label is the identity idcx.

o

2]
o

7(X) =1, remove X from the equation. Potentially removes
partial commutation.

7(X) = aX, where a is a constant.
7(X) = YaX where Y is a fresh variable such that

p(Y) & p(X). Prevent that such a splitting occurs for X
more than a constant number of times. (This is crucial.)

Define types 6(x) = u to express that xu = uz. Here, x is a
variable or a word of length at most 2 and u is a word of
length at most 2.

There are symmetric rules for the right side.
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Compression: transitions that modify constants

Choose fresh letters ¢ and ¢.
© Rename a as ¢. The label is the morphism defined by

h(c) = a and h(¢) = a.

@ Compress some word u into a single letter ¢. This includes
compressions ab — a, ab — b, aa — a. The label is the
morphism defined by

h(c) = u and h(c) = w.
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Uncrossing

If we wish to compress a factor ab into a fresh letter ¢, then we
must uncross the factor first. Consider

- bXaXuXa- -

with o(X) = vbw where p(a) N p(v) =0 and p(b) = p(a) U p(v).

Then we split X by 7(X) = YbX where Y is a new variable with
p(Y) = S. The new solution is ¢(Y) = v and o(X) = w.

We obtain
o DYbXaYbXuXbYa - =---bYbXYabXuX bay ---

and compression yields

- bYbXYcXuXeY -
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Conclusion

@ The algorithm is greedy: it tries nondeterministically
everything within a given space bound.

@ The “tricky part” is to prove completeness: every solution can
be recovered by some path in the NFA A if “the extended
alphabet C' is large enough.”

@ Open problem. Can we construct an NFA for
endomorphisms over some free group F'(C) if there are
elements of order 27 The answer is “yes” for free products.

o Challenge. Prove NP-completeness for WORDEQUATIONS.

Thank you
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