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Marcel-Paul Schiitzenberger, 1920-1996

A legacy of Schiitzenberger is the following program

o Consider a variety of groups H and the maximal variety of
monoids H such that all groups are in H.

e For a language characterization of H, consider “H-controlled
stars” over prefix codes of bounded synchronization delay.

@ Show that this leads to a language characterization of H.
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A legacy of Schiitzenberger is the following program

o Consider a variety of groups H and the maximal variety of
monoids H such that all groups are in H.

e For a language characterization of H, consider “H-controlled
stars” over prefix codes of bounded synchronization delay.

@ Show that this leads to a language characterization of H.

For star-free languages there are no nontrivial groups, and the
“H-controlled star” is the usual Kleene-star.

Schiitzenberger (1975 and 1974): the program works for star-free
languages; and it works if H is the class of abelian groups. One
direction of the program work for all H.

Diekert & W. (2016): Both directions work for all varieties of
groups H.
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Notation

A = finite alphabet

A* = set of finite words

M = finite monoid, G = finite group
h: A* — M is a homomorphism

h recognizes L C A* if h=(h(L)) = L.

If V is a class of finite monoids, then

V(A") ={L C A* | some h: A* — M € V recognizes L}
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Varieties of finite monoids

A variety V is a class of finite monoids which is closed under finite
direct products and divisors.

1, Ab, G are varieties of groups. \

If V is a variety, then
VNG ={GeV]|Gisa group}

is a variety of finite groups.

12



Varieties of finite monoids

A variety V is a class of finite monoids which is closed under finite
direct products and divisors.

1, Ab, G are varieties of groups.

If V is a variety, then
VNG ={GeV]|Gisa group}

is a variety of finite groups.

If H is a variety of finite groups, then we let
H = {M € Mon | all subgroups of M are in H}.

12



Varieties of finite monoids

A variety V is a class of finite monoids which is closed under finite
direct products and divisors.

1, Ab, G are varieties of groups.

If V is a variety, then
VNG ={GeV]|Gisa group}

is a variety of finite groups.

If H is a variety of finite groups, then we let
H = {M € Mon | all subgroups of M are in H}.

12



Examples of language characterizations

@ Regular languages: finite subsets & closure under finite union,
concatenation, and Kleene-star
= recognizable by a finite monoid
_ G4,
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Examples of language characterizations

@ Regular languages: finite subsets & closure under finite union,
concatenation, and Kleene-star
= recognizable by a finite monoid
= G(A").

o Star-free languages: finite subsets & closure under finite
union, concatenation, complementation, but no Kleene-star

= recognizable by a finite aperiodic monoid
= 1(A*) = AP(A*).
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A formal language characterization of H

Prefix codes of bounded synchronization delay

K C AT is called prefix code if it is prefix-free. That is: u,uv € K
implies u = uv.

A prefix-free language K is a code since every word uv € K* admits

a unique factorization v = uq - - - ug with k> 0 and u; € K.

A prefix code K has bounded synchronization delay if for some
d € N and for all u,v,w € A* we have:
if wow e K* and v € K%, then uv € K*.

@ B C A yields a prefix code with synchronization delay 0.
e If ce A\ B, then B*c is a prefix code with delay 1.

@ A? has unbounded synchronization delay.
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H-controlled star

Let H be a variety of groups and G € H. Let K C A™ be a prefix
code of bounded synchronization delay. Consider any mapping

v : K — G and define K, = v~ !(g). Assume further that

K, € H(A*) for all g € G.

With these data the H-controlled star K* is defined as:

K = {ug, -+ -ug, € K* | ug, € Kg, N g1--- g, =1€G}.
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H-controlled star

Let H be a variety of groups and G € H. Let K C A™ be a prefix
code of bounded synchronization delay. Consider any mapping

v : K — G and define K, = v~ !(g). Assume further that

K, € H(A*) for all g € G.

With these data the H-controlled star K* is defined as:

K = {ug, -+ -ug, € K* | ug, € Kg, N g1--- g, =1€G}.

If G is the trivial group {1}, then K*¥v = K* is the usual star. \

Proposition (Schiitzenberger, RAIRO, 8:55-61, 1974.)

H(A*) is closed under the H-controlled star.
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Schiitzenberger's SDy classes

By SDg(A*) we denote the set of regular languages which is
inductively defined as follows.
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Schiitzenberger's SDy classes

By SDg(A*) we denote the set of regular languages which is
inductively defined as follows.

Q Finite subsets of A* are in SDg(A¥).
Q@ If L, K € SDig(A*), then LUK, L- K € SDg(A¥).
© Let K C AT be a prefix code of bounded synchronization

delay, v : K — G € H, and v~ !(g) € SDg(A*) for all g.
Then the H-controlled star K™ is in SDgr(A*).

Note: the definition doesn’t involve any complementation!

Proposition (Schiitzenberger (1974) reformulated)

as

SDu(A*) CH(AY)
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Schiitzenberger's result holds for all varieties.

Theorem (Schiitzenberger (1975) and (1974))

SD1(A*) = T(A*) = AP(A*) and SD ap(A*) = Ab(A*)
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Schiitzenberger's result holds for all varieties.

Theorem (Schiitzenberger (1975) and (1974))

SDy (A*) = T(A*) = AP(A*) and SD ap(A*) = Ab(A¥)

Theorem (Diekert, W., 2016)

Let H be any variety of finite groups. Then we have

SDg(A*) = H(AY).
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Local divisor technique

@ The local divisor technique is the “algebraic child” of an
induction in Thomas Wilke's habilitation for a simplified proof

of FO = LTL over finite words, see STACS 1999 and this
ICALP.
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Local divisor technique

@ The local divisor technique is the “algebraic child” of an
induction in Thomas Wilke's habilitation for a simplified proof
of FO = LTL over finite words, see STACS 1999 and this
ICALP.

o Let M be a monoid and ¢ € M. Consider the set cM N Mc
and define a new multiplication

xcocy = xey.
Then M. = (¢M N Mc,o,c) is monoid: the local divisor at c.

@ \e:{x € M| cxe Mc}— M. given by A\.(x) =cx is a
surjective homomorphism. Hence, M. is a divisor of M.

@ If cis a unit, then M, is isomorphic to M.
o If ¢ = ¢?, then M, is the standard “local monoid”.

@ If ¢ is not a unit, then 1 ¢ M,.. Hence, if ¢ is not a unit and if
M is finite, then |M.| < |M].
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Main steps in showing H(A*) C SDg(A*)

@ Starting point: L recognized by ¢ : A* — M € H.
@ Wilog. M is not a group: Choose ¢ € A s.t. ¢(c) is not a unit.
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@ Starting point: L recognized by ¢ : A* — M € H.

@ Wilog. M is not a group: Choose ¢ € A s.t. ¢(c) is not a unit.

e We write B = A\ {c}, [w] = ¢~ !(w) and
T ={[u] | ue B*}.
o Wilog. w = ugcuy ... Clupt1.
e New homomorphism: ¢ : T* — M., [u] — ¢(cuc).

Then
P([ua] - [un]) = pleurc) o - - o p(cunc)
= p(cuic---cupc) = p(c) - p(uic- - - upc).
Define o : (B*c)* — T™ with o(uc) = [u]. Then
Yw € A* @ p(cwe) = o (we).
“Essentially” it remains to show

o Y(SDu(T™*)) C SDi(A*).
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@ SDg = H also holds over infinite words.
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Rees extensions if and only if V. = H.



Other results

@ SDg = H also holds over infinite words.
@ Local divisor technique yields a Rees matrix decomposition
result:
e Every monoid is a Rees extension of a proper submonoid and a

local divisor.
e Thus, every monoid is an iterated Rees extension of subgroups.
o H = Rees(H).
o solves open problem of Almeida and Klima: V is closed under

Rees extensions if and only if V. = H.

Thank you
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