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Marcel-Paul Schützenberger, 1920–1996

A legacy of Schützenberger is the following program

Consider a variety of groups H and the maximal variety of
monoids H such that all groups are in H.

For a language characterization of H, consider “H-controlled
stars” over prefix codes of bounded synchronization delay.

Show that this leads to a language characterization of H.

For star-free languages there are no nontrivial groups, and the
“H-controlled star” is the usual Kleene-star.

Schützenberger (1975 and 1974): the program works for star-free
languages; and it works if H is the class of abelian groups. One
direction of the program work for all H.

Diekert & W. (2016): Both directions work for all varieties of
groups H.
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Notation

A = finite alphabet

A∗ = set of finite words

M = finite monoid, G = finite group

h : A∗ →M is a homomorphism

h recognizes L ⊆ A∗ if h−1(h(L)) = L.

If V is a class of finite monoids, then

V(A∗) = {L ⊆ A∗ | some h : A∗ →M ∈ V recognizes L}
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Varieties of finite monoids

A variety V is a class of finite monoids which is closed under finite
direct products and divisors.

Example

1, Ab, G are varieties of groups.

If V is a variety, then

V ∩G = {G ∈ V | G is a group}
is a variety of finite groups.

If H is a variety of finite groups, then we let

H = {M ∈Mon | all subgroups of M are in H} .

Example

1 = AP

G = Mon
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Examples of language characterizations

Regular languages: finite subsets & closure under finite union,
concatenation, and Kleene-star
= recognizable by a finite monoid
= G(A∗).

Star-free languages: finite subsets & closure under finite
union, concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid
= 1(A∗) = AP(A∗).
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A formal language characterization of H

Prefix codes of bounded synchronization delay

K ⊆ A+ is called prefix code if it is prefix-free. That is: u, uv ∈ K
implies u = uv.

A prefix-free language K is a code since every word u ∈ K∗ admits
a unique factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K.

A prefix code K has bounded synchronization delay if for some
d ∈ N and for all u, v, w ∈ A∗ we have:
if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗.

Example

B ⊆ A yields a prefix code with synchronization delay 0.

If c ∈ A \B, then B∗c is a prefix code with delay 1.

A2 has unbounded synchronization delay.
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H-controlled star

Let H be a variety of groups and G ∈ H. Let K ⊆ A+ be a prefix
code of bounded synchronization delay. Consider any mapping
γ : K → G and define Kg = γ−1(g). Assume further that
Kg ∈ H(A∗) for all g ∈ G.

With these data the H-controlled star K?↓γ is defined as:

K?↓γ = {ug1 · · ·ugk ∈ K
∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Example

If G is the trivial group {1}, then K?↓γ = K∗ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55–61, 1974.)

H(A∗) is closed under the H-controlled star.

7 / 12



H-controlled star

Let H be a variety of groups and G ∈ H. Let K ⊆ A+ be a prefix
code of bounded synchronization delay. Consider any mapping
γ : K → G and define Kg = γ−1(g). Assume further that
Kg ∈ H(A∗) for all g ∈ G.

With these data the H-controlled star K?↓γ is defined as:

K?↓γ = {ug1 · · ·ugk ∈ K
∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Example

If G is the trivial group {1}, then K?↓γ = K∗ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55–61, 1974.)

H(A∗) is closed under the H-controlled star.

7 / 12



H-controlled star

Let H be a variety of groups and G ∈ H. Let K ⊆ A+ be a prefix
code of bounded synchronization delay. Consider any mapping
γ : K → G and define Kg = γ−1(g). Assume further that
Kg ∈ H(A∗) for all g ∈ G.

With these data the H-controlled star K?↓γ is defined as:

K?↓γ = {ug1 · · ·ugk ∈ K
∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Example

If G is the trivial group {1}, then K?↓γ = K∗ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55–61, 1974.)

H(A∗) is closed under the H-controlled star.

7 / 12



Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).

2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗).

3 Let K ⊆ A+ be a prefix code of bounded synchronization
delay, γ : K → G ∈ H, and γ−1(g) ∈ SDH(A∗) for all g.
Then the H-controlled star K?↓γ is in SDH(A∗).

Note: the definition doesn’t involve any complementation!

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)
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Schützenberger’s result holds for all varieties.

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)

Theorem (Diekert, W., 2016)

Let H be any variety of finite groups. Then we have

SDH(A∗) = H(A∗).
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Local divisor technique

The local divisor technique is the “algebraic child” of an
induction in Thomas Wilke’s habilitation for a simplified proof
of FO = LTL over finite words, see STACS 1999 and this
ICALP.

Let M be a monoid and c ∈M . Consider the set cM ∩Mc
and define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.
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Main steps in showing H(A∗) ⊆ SDH(A
∗)

Starting point: L recognized by ϕ : A∗ →M ∈ H.

Wlog. M is not a group: Choose c ∈ A s.t. ϕ(c) is not a unit.

We write B = A \ {c}, [w] = ϕ−1(w) and
T = {[u] | u ∈ B∗}.
Wlog. w = u0cu1 . . . cun+1.

New homomorphism: ψ : T ∗ →Mc, [u] 7→ ϕ(cuc).

Then

ψ([u1] · · · [un]) = ϕ(cu1c) ◦ · · · ◦ ϕ(cunc)
= ϕ(cu1c · · · cunc) = ϕ(c) · ϕ(u1c · · ·unc).

Define σ : (B∗c)∗ → T ∗ with σ(uc) = [u]. Then

∀w ∈ A∗ : ϕ(cwc) = ψσ(wc).

“Essentially” it remains to show

σ−1(SDH(T ∗)) ⊆ SDH(A∗).
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Other results

1 SDH = H also holds over infinite words.

2 Local divisor technique yields a Rees matrix decomposition
result:

Every monoid is a Rees extension of a proper submonoid and a
local divisor.
Thus, every monoid is an iterated Rees extension of subgroups.
H = Rees(H).
solves open problem of Almeida and Kĺıma: V is closed under
Rees extensions if and only if V = H.

Thank you
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Rees extensions if and only if V = H.

Thank you

12 / 12



Other results

1 SDH = H also holds over infinite words.
2 Local divisor technique yields a Rees matrix decomposition

result:

Every monoid is a Rees extension of a proper submonoid and a
local divisor.
Thus, every monoid is an iterated Rees extension of subgroups.
H = Rees(H).
solves open problem of Almeida and Kĺıma: V is closed under
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